Doctorant (F/H) Vectorisation D'objets à Partir - Sophia Antipolis, France - Inria

Inria
Inria
Entreprise vérifiée
Sophia Antipolis, France

il y a 2 semaines

Sophie Dupont

Posté par:

Sophie Dupont

beBee Recruiter


Description

Type de contrat :

CDD

Niveau de diplôme exigé :
Bac + 5 ou équivalent


Fonction :
Doctorant


A propos du centre ou de la direction fonctionnelle:
Le centre Inria d'Université Côte d'Azur regroupe 37 équipes de recherche et 8 services d'appui. Le personnel du centre (500 personnes environ) est composé de scientifiques de différentes nationalités, d'ingénieurs, de techniciens et d'administratifs.

Les équipes sont principalement implantées sur les campus universitaires de Sophia Antipolis et Nice ainsi que Montpellier, en lien étroit avec les laboratoires et les établissements de recherche et d'enseignement supérieur (Université Côte d'Azur, CNRS, INRAE, INSERM...), mais aussi avec les acteurs économiques du territoire.


Présent dans les domaines des neurosciences et biologie computationnelles, la science des données et la modélisation, le génie logiciel et la certification, ainsi que la robotique collaborative, le Centre Inria d'Université Côte d'Azur est un acteur majeur en termes d'excellence scientifique par les résultats obtenus et les collaborations tant au niveau européen qu'international.


Mission confiée:


Context
Monitoring and anticipating natural disasters and emerging risks using remote sensing data is a key scientific challenge.

One of the underlying problems is to describe objects of interest contained in the remote sensing data, typically large-scale images, with vectorized representations such as polygons, planar graphs or networks of parametric curves.

These compact and parametrizable representations are important for understanding, analyzing and simulating natural risks.

Object vectorization has been a long-standing problem in Computer Vision.

To capture the silhouette of a solid object in an image for instance, many works have considered polygons as a relevant representation choice:
they are compact, editable and can basically approximate well any close chain of pixels.

Traditionally, algorithms such as Douglas-Peucker [1] were used to simplify such a chain of pixels extracted after a semantic segmentation of an image at the pixel level.

More recently, deep Learning methods were proposed to extract polygons directly from input images using typically recurrent neural networks to predict the next node of the polygon [2,3] or graph neural networks to link a list of predicted nodes [4].

Detecting and vectorizing objects simultaneously in an end-to-end fashion is however very ambitious as neural networks, while impressive for predicting, are still not armed for exploring the complex solution spaces of geometric objects and structures.

Recent works, e.g., for line-segments [5] or low complexity polygons [6], suggest that hybrid methods remain the best option with typically prediction of raster maps by deep learning and vectorization of elements of these raster maps by geometric approaches.


One of the main difficulties in our context is that objects of interest can have various appearances and geometric specificities.

For instance, buildings are surface objects whose boundaries are piecewise-lineic while roads or faults are curved line networks. In the literature methods are usually specific to only one type of vector representation.


Objectives


The goal of this PhD is to investigate new geometric models to vectorize a large family of objects contained in remote sensing data.

These models should take as input the remote sensing data and some prediction maps that estimate the semantic class of objects at the pixel level.

These maps will be typically provided by the last generation of deep learning architectures for classification and semantic segmentation tasks.


Keywords
computer vision, geometry processing, remote sensing, object vectorization, geometric data structures


References
[1] Wu and Marquez. A non-self-intersection Douglas-Peucker algorithm. In IEEE Symposium on Computer Graphics and Image Processing, 2003

[2] Li, Wegner and Lucchi. Topological Map Extraction From Overhead Images. Proc. of the IEEE International Conference on Computer Vision (ICCV) 2019

[3] Acuna, Ling, Kar and Fidler. Efficient interactive annotation of segmentation datasets with polygon-rnn++. Proc. of the IEEE conference on Computer Vision and Pattern Recognition (CVPR), 2018

[4] Zorzi, Bazrafkan, Habenschuss, Fraundorfer


PolyWorld:
Polygonal Building Extraction With Graph Neural Networks in Satellite Images. Proc. of the IEEE conference on Computer Vision and Pattern Recognition (CVPR), 2022

[5] Pautrat, Barath, Larsson, Oswald, Pollefeys


DeepLSD:
Line Segment Detection and Refinement with Deep Image Gradients. Proc. of the IEEE conference on Computer Vision and Pattern Recognition (CVPR), 2023

[6] Li M., Lafarge and Marlet. Approximating shapes in images with low-complexity polygons. Proc. of the IEEE conference on Computer Vision and Pattern Recognition (CVPR), 2020

[7] Bahl, Bahri and Lafarge. Single-Shot End-to-end Road Graph

Plus d'emplois de Inria