Efficient and Selective Oxidation of Methane Via - Marseille, France - Institut des Sciences Moléculaires de Marseille (iSm2), équipe Chirosciences

Institut des Sciences Moléculaires de Marseille (iSm2), équipe Chirosciences
Institut des Sciences Moléculaires de Marseille (iSm2), équipe Chirosciences
Entreprise vérifiée
Marseille, France

il y a 3 semaines

Sophie Dupont

Posté par:

Sophie Dupont

beBee Recruiter


Description

Efficient and Selective Oxidation of Methane via Caged Bioinspired Catalysts:

  • Réf
-
ABG-113407

  • Sujet de Thèse 14/04/2023
  • Autre financement public
  • Institut des Sciences Moléculaires de Marseille (iSm2), équipe Chirosciences
  • Lieu de travail
  • Marseille
  • Provence-AlpesCôte d'Azur
  • France
  • Intitulé du sujet
  • Efficient and Selective Oxidation of Methane via Caged Bioinspired Catalysts
  • Champs scientifiques
  • Chimie


  • Mots clés

  • Catalyseurs bioinspirés, catalyseurs supramoléculaires, Cages organiques, Convertion sélective du méthane
    Description du sujet:

PhD proposal :
Efficient and Selective Oxidation of Methane via Caged Bioinspired Catalysts

Laboratory:
Institut des Sciences Moléculaires de Marseille, iSm2


Team:
Chirosciences


Thesis supervisors:
Prof. Alexandre Martinez and Dr. Cédric Colomban


Context of the study. Approximatively 70-90% of natural gas is constituted of methane CH4, a particularly powerful greenhouse gas with a global warming potential of 30 times the baseline of CO2. In its last report, the IPCC has defined methane as the priority target for emission reduction, along with CO2. It direct transformation to energy vectors (such as methanol) is an environmental and energetical challenge ("waste-to-wealth" approach to fight the global warming and produce cheap energy).
But the selective transformation of CH4 is particularly difficult due to the extreme inertness of its C-H bonds (the most stable in organic chemistry with ΔHC H =
In nature, however, some metalloenzymes are able to perform the selective oxidation of methane to methanol under physiological conditions. These natural catalysts display an active metal center (Fe or Cu) confined in the enzymatic cavity. This hydrophobic structure maximized efficiency and selectivity, owing to 1) substrate (CH4) recognition and
2) product (CH3OH) release.


Description of the project. Aiming at reproducing the remarkable chemistry found in nature, our team develop bioinspired catalysts displaying a cage structure (hydrophobic cavity) that act as a filter to select the targeted substrate (see adjacent figure).[1-3] We have recently demonstrated that some caged catalysts - based on non-macrocyclic ligands - results in a more selective oxidation of methane compared to the corresponding model catalysts devoid of cavity.[3] However, their efficiency remain too low, and the development of new catalysts displaying enhanced activity is highly needed. This project will focus on the development of new caged catalysts based on Fe
- or Cu
- complexes build from macrocyclic ligands. These structures will strongly enhance the catalytic efficiency while keeping an excellent selectivity.


This project aims at:
1) preparing the caged ligands and corresponding complexes, and
2) evaluating their catalytic properties in the oxidation of CH4, under mild conditions.

By tackling this fundamental issue, a new method for the selective conversion of the CH4 greenhouse gas, will be developed.


Références.

  • C. Colomban and co., Chem. Commun. 2021, 57, 2281
  • A. Martinez and co., Angew. Chem. Int. Ed. 2018, 57,14212
  • C. Colomban et al., Chem. Commun., 2023, 59, 4288

Prise de fonction:


  • 02/10/2023
    Nature du financement:
  • Autre financement public

Précisions sur le financement:

  • ANR
    Présentation établissement et labo d'accueil:
  • Institut des Sciences Moléculaires de Marseille (iSm2), équipe Chirosciences
Au sein d'Institut des Sciences Moléculaires de Marseille, le groupe de chimie supramoléculaire de l'équipe Chirosciences (dirigée par le Prof. Alexandre Martinez) s'intérresse au dévelopment de cages supramoléculaires organiques pour la reconnaissance et la catalyse.

En particulier, C. Colomban et A.

Martinez s'intérressent à reproduire la chimie efficace existante dans la nature (méttalo-enzymes), en développant des catalyseurs biomimétiques supramoléculaires possédant une structure cage (cavité hydrophobe) agissant comme un filtre permettant de sélectionner le substrat (encapsulation) et ejecter le produit d'intérêt.


Site web:


Intitulé du doctorat:


  • Doctorat de Chimie
    Pays d'obtention du doctorat:
  • France

Etablissement délivrant le doctorat:


  • Aix-Marseille Université
    Ecole doctorale:
- École Doctorale des sciences chimiques 19/05/2023

Plus d'emplois de Institut des Sciences Moléculaires de Marseille (iSm2), équipe Chirosciences